Regenerative Stem Cell Therapy

  • The applications of stem cells are as diverse as stem cells’ possibilities for differentiation. While this revolutionary technology has made the most headway in orthopedics as an alternative to invasive join surgeries, it is also breaking ground in the rheumatology, cardiology, neurology, and immunology.
  • The tissue regenerative properties of stem cells make them a unique tool for repairing cartilage after injury, serving as an alternative to surgery. Stem cells’ action on cartilage can reduce pain and improve joint function for patients who have suffered joint injuries.
  • In the human body, stem cells participate in bone healing after a fracture. Harnessing their osteogenic properties, stem cell treatment can aid in bone union to improve fracture recovery.
  • Scope of Regenerative Therapy
  • Stem cells, which occur naturally in the body, are “naive” or unspecialized. This means that, based on cues from their environment, these cells can transform into and assume the functions of a variety of different cells in the body. The ability to mature in a context-specific way is the key to the vast potential of stem cells in regenerative medicine. When injected into a damaged tissue, stem cells specialize to carry out the necessary function in that particular area, improving symptoms and function.
  • THERE ARE FOUR TYPES OF STEM CELLS
  • The cells in healthcare are a subcategory of pluripotent stem cells called mesenchymal stem cells.
  • TOTIPOTENT These stem cells are able to specialize into any kind of tissue.
  • LURIPOTENT Cells that can specialize into any kind of tissue, with the exception of placental tissue.
  • MULTIPOTENT These stem cells can specialize into 2+ cell types.
  • UNIPOTENT Stem cells that can only specialize into one type of cell.Media & Text


What Makes Mesenchymal Stem Cells (MSCs) Different

  • Migration
  • MSCs have a special ability to move to specific tissues, going where the body needs them most. This means that stem cells can be injected into the bloodstream to then move on their own to the affected area.
  • Repair
  • In the case of tissue damage, MSCs have the ability to release growth factors and specialize into a number of tissue cell types that allow for the tissue to be regenerated.
  • Immunomodulation
  • When foreign cells are introduced in the body, the concern is that they will often generate an immune response. Because MSCs express very few antigens on their surfaces that can generate an immune response (like MHCI or MHCII), they do not elicit a reaction from the patient’s immune system T-cells, making them safe to use.
  • Reduction of Inflammation
  • MSCs reduce the signal cells that promote inflammation (like TNF-alpha and TNF-gamma). While this is another function that helps them to avoid the immune response, it is also essential to stem cells’ utility in chronic and autoimmune diseases characterized by inflammation.
  • Where Stem Cells Come From
  • While stem cells are found throughout the body, the stem cells used in medicine today may be derived from four different sources: umbilical cord tissue, embryonic tissue, bone marrow, and adipose tissue. However, some sources have their drawbacks. Embryonic stem cells raise ethical concerns, while bone marrow and adipose tissue stem cells can only be retrieved through surgical procedures.
  • Considering this, BioGenix uses exclusively umbilical cord stem cells. Umbilical cord tissue retrieval, which takes place immediately after the umbilical cord is cut upon delivery, is non-invasive and ethically sound. In addition to containing mesenchymal stem cells, umbilical cord tissue is a source of growth factors that also play an important role in regenerative medicine.
  • How Stem Cells Work:
  • RESPOND: When an area of the body is injured or not functioning properly, distress signals are sent through the bloodstream. These signals serve to recruit mesenchymal stem cells to the affected area.
  • DOCK: Once in the affected area, stem cells dock on other cells and begin to produce signaling proteins that work to regulate inflammation, aid in angiogenesis, and promote tissue repair.
  • SPECIALIZE: Stem cells then mature to carry out the functions of the cells that are needed. In this way, they compensate for the cells that are damaged, nonfunctional, or lacking to improve organ function, and consequently improve disease symptoms.
Share by: